High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli
نویسندگان
چکیده
Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification.
منابع مشابه
Detection of Microsatellite Instability by High-Resolution Melting Analysis in Colorectal Cancer
Background: Colorectal cancer (CRC) is the third most common cancer worldwide. microsatellite instability (MSI) is a molecular marker of a deficient mismatch repair system and happens in almost 15% of CRCs. Because of a wide frequency of MSI+ CRC in Iran compared to other parts of the world, the importance of screening for this type of cancer is highlighted. Methods: The most common MSI detecti...
متن کاملRapid and Specific Detection of Escherichia coli Sequence Type 131 (ST131) and its Key Subclones Using a Novel Single-tube Multiplex PCR Assay
متن کامل
One-step species-specific high resolution melting analysis for nosocomial bacteria detection.
Nosocomial infections are a major public health concern worldwide. Early and accurate identification of nosocomial pathogens which are often multidrug resistant is crucial for prompt treatment. Hence, an alternative real-time polymerase chain reaction coupled with high resolution melting-curve analysis (HRMA) was developed for identification of five nosocomial bacteria. This assay targets speci...
متن کاملHigh-resolution melting-curve analysis of ligation-mediated real-time PCR for rapid evaluation of an epidemiological outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli.
Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting a...
متن کاملRapid detection of Escherichia coli O157:H7 with multiplex real-time PCR assays.
A SYBR Green LightCycler PCR assay using a single primer pair allowed simultaneous detection of stx1 and/or stx2 of Escherichia coli O157:H7. A distinct sequence of the Shiga-like toxin genes was amplified to yield products of 227 and/or 224 bp, respectively. The two products were distinguished by melting point curve analysis.
متن کامل